Unmixing urban hyperspectral imagery with a Gaussian mixture model on endmember variability

نویسندگان

  • Yuan Zhou
  • Erin B. Wetherley
  • Paul D. Gader
چکیده

Spectral unmixing given a library of endmember spectra can be achieved by multiple endmember spectral mixture analysis (MESMA), which tries to find the optimal combination of endmember spectra for each pixel by iteratively examining each endmember combination. However, as library size grows, computational complexity increases which often necessitates a laborious and heuristic library reduction method. In this paper, we model a pixel as a linear combination of endmembers sampled from probability distributions of Gaussian mixture models (GMM). The parameters of the GMM distributions are estimated using spectral libraries. Abundances are estimated based on the distribution parameters. The advantage of this algorithm is that the model size grows very slowly as a function of the library size. To validate this method, we used data collected by the AVIRIS sensor over the Santa Barbara region: two 16 m spatial resolution and two 4 m spatial resolution images. 64 validated regions of interest (ROI) (180 m by 180 m) were used to assess estimate accuracy. Ground truth was obtained using 1 m images leading to the following 6 classes: turfgrass, non-photosynthetic vegetation (NPV), paved, roof, soil, and tree. Spectral libraries were built by manually identifying and extracting pure spectra from both resolution images, resulting in 3,287 spectra at 16 m and 15,426 spectra at 4 m. We then unmixed ROIs of each resolution using the following unmixing algorithms: the setbased algorithms MESMA and AAM, and the distribution-based algorithms GMM, NCM, and BCM. The original libraries were used for the distribution-based algorithms whereas set-based methods required a sophisticated reduction method, resulting in reduced libraries of 61 spectra at 16 m and 95 spectra at 4 m. The results show that GMM performs best among the distributionbased methods, producing comparable accuracy to MESMA, and may be more robust across datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery...

متن کامل

Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments

A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover cl...

متن کامل

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral variability and leveraging spatial information. In this work, we exte...

متن کامل

An Investigation of Likelihoods and Priors for Bayesian Endmember Estimation

A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember detection is presented. The standard linear mixing model used for hyperspectral unmixing assumes that hyperspectral data reside in a single convex region. However, hyperspectral data is often nonconvex. Furthermore, in standard unmixing methods, endmembers are generally represented as a single point in the high dimension...

متن کامل

An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery

Although many endmember extraction algorithms have been proposed for hyperspectral images in recent years, there are still some problems in endmember extraction which would lead to inaccurate endmember extraction. One important problem is the variation in endmember spectral signatures due to spatial and temporal variability in the condition of scene components and differential illumination cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.08513  شماره 

صفحات  -

تاریخ انتشار 2018